Effect Of Rice Initiative Programme On Rice Yield Under Climate Variability In Mali
DOI:
https://doi.org/10.5281/zenodo.18363055Keywords:
Rice Initiative Programme, yield, variance, mean, climate variabilityAbstract
This study estimated the effects of the Rice Initiative Programme (RIPRO) on rice mean yield and its variance under climate variability using the stochastic production function. The study relied on a three-stage feasible generalized least square to estimate a translog production function using panel data which covered climate and non-climate variables on six rice-growing regions from 1987 to 2017. The results showed that the rice initiative programme has positively affected rice mean yield. The results also indicated that climate variability influenced rice mean yield through variables like temperature deviation from its optimal level for rice and diurnal temperature range. Government and its development partners should encourage farmers to adopt improved rice varieties that withstand high temperature, and early sowing practices to avoid the stresses from high temperatures.
References
AfDB. (2016). Annual Development Effectiveness Review 2016 Accelerating the pace of change.
Aker, J. C., Block, S., Ramachandran, V., & Timmer, C. P. (2010). West African experience with the world rice crisis, 2007–2008. The rice crisis: markets, policies and food security, 143-162.
Bado, V. B., Djaman, K., & Mel, V. C. (2018). Developing fertilizer recommendations for rice in Sub-Saharan Africa, achievements and opportunities. Paddy and Water Environment, 16(3), 571–586. https://doi.org/10.1007/s10333-018-0649-8
Barnwal, P., & Kotani, K. (2010). Impact of variation in climatic factors on crop yield: A case of rice crop in Andhra Pradesh, India. Economics and Management series, 17.
Benbi, D. K., & Khosa, M. K. (2014). Effects of temperature, moisture, and chemical composition of organic substrates on C mineralization in soils. Communications in soil science and plant analysis, 45(21), 2734-2753. https://doi.org/10.1080/00103624.2014.950423
Boubacar, I. (2012). The effects of drought on crop yields and yield variability: An economic assessment. International Journal of Economics and Finance, 4(12), 51-60. https://doi.org/10.5539/ijef.v4n12p51
Cabas, J., Weersink, A., & Olale, E. (2010). Crop yield response to economic, site and climatic variables. Climatic change, 101(3-4), 599-616. https://doi.org/10.1007/s10584-009-9754-4
Carew, R., Meng, T., Florkowski, W. J., Smith, R., & Blair, D. (2017). Climate change impacts on hard red spring wheat yield and production risk: evidence from Manitoba, Canada. Canadian journal of plant science, 98(3), 782-795. https://doi.org/10.1139/cjps-2017-0135
Chapagain, A. K., & Hoekstra, A. Y. (2010). The green, blue and grey water footprint of rice from both a production and consumption perspective. Value of Water Research Report Series No. 40.
Chen, C. C., McCarl, B. A., & Schimmelpfennig, D. E. (2004). Yield variability as influenced by climate: A statistical investigation. Climatic Change, 66(1-2), 239-261. doi:10.1023/B:CLIM.00000 43159.33816.e5.
CPS/SDR. (2013). Cellule de Planification et de Statistique du Secteur Developpement Rural: Bilan de la campagne agropastorale 2011-2012 et résultats provisoires de la campagne 2012-2013.
CPS/SDR. (2016). Cellule de Planification et de Statistique du Secteur Developpement Rural: Resultats definitifs de la campagne agropastorale situation alimentaire et nutritionnelle 2015/2016.
CPS/SDR. (2017). Cellule de Planification et de Statistique du Secteur Developpement Rural: Resultats definitifs de la campagne agropastorale situation alimentaire et nutritionnelle 2016/2017.
Dass, A., Chandra, S., Uphoff, N., Choudhary, A. K., Bhattacharyya, R., & Rana, K. S. (2017). Agronomic fortification of rice grains with secondary and micronutrients under differing crop management and soil moisture regimes in the north Indian Plains. Paddy and water environment, 15(4), 745-760. https://doi.org/10.1007/s10333-017-0588-9
Diakite, L., Diarisso, T., & Drame, Z. (2016). Etude de la situation de référence du projet commissionné sur le “‘Système de Riziculture Intensif (SRI) dans le cadre du WAAAP 2A au Mali.’”
FAO. (2017). Mali country fact sheet on food and agriculture policy trends. Fao (Vol. 717).
Fofana, I., Goundan, A., & Domgho, L. V. M. (2014). Impact simulation of ECOWAS rice self-sufficiency policy.
Gujarati, D. N. (2004). Basic Econometric Methods Fourth Edition (Prentice H). New York.
Harris, T., & Consulting, T. H. (2014). Africa agriculture status report 2014: Climate change and smallholder agriculture in Sub-Saharan Africa (No. BOOK). Alliance for a Green Revolution in Africa (AGRA).
Hollinger, F., & Staatz, J. M. (2015). Agricultural Growth in West Africa. Market and policy drivers. FAO, African Development Bank, ECOWAS. Pobrano październik.
Iheonu, C. O., Asongu, S., Emeka, E. T., & Orjiakor, E. C. (2022). Climate change and agricultural productivity in West Africa (No. WP/22/065). AGDI Working Paper.
Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of econometrics, 115(1), 53-74.
INSTAT. (2018). Institut national de la statistique du Mali : Les comptes éconmiques en 2017.
Izugbara, C., Suubi, K., & Ingabire, M. G. (2024). Gender and adolescent sexual and reproductive health and rights in West and Central Africa: New evidence and emerging gaps. African Journal of Reproductive Health, 28(8s), 15.
Just, R. E., & Pope, R. D. (1978). Stochastic specification of production functions and economic implications. Journal of econometrics, 7(1), 67-86.
Karn, P. K. (2014). The impact of climate change on rice production in Nepal. SANDEE.
Kergna, A. O., & Cisse, I. (2014). Etude sur la chaine de valeur riz en vue d’explorer les facteurs affectant les performances des organisations paysannes (2014).
Kumar, S., Meena, B. L., Om, H., Kumar, S., & Meena, V. K. (2024). Understanding Climate Change and Its Impact on Crops. 12–30. https://doi.org/10.70762/b1c20125
Krishnan, P., Ramakrishnan, B., Reddy, K. R., & Reddy, V. R. (2011). High-temperature effects on rice growth, yield, and grain quality. In Advances in agronomy (Vol. 111, pp. 87-206). Academic Press. https://doi.org/10.1016/B978-0-12-387689-8.00004-7
McKee, T. B., Doesken, N. J., & Kleist, J. (1993, January). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183).
Miyamoto, K., Maruyama, A., Haneishi, Y., Matsumoto, S., Tsuboi, T., Asea, G., ... & Kikuchi, M. (2012). NERICA cultivation and its yield determinants: The case of upland rice farmers in Namulonge, Central Uganda. Journal of Agricultural Science, 4(6), 120. https://doi.org/10.5539/jas.v4n6p120
Mohan, S., Simhadrirao, B., & Arumugam, N. (1996). Comparative study of effective rainfall estimation methods for lowland rice. Water resources management, 10(1), 35-44. https://doi.org/10.1007/BF00698810
Okalebo, J. R., Othieno, C. O., Woomer, P. L., Karanja, N. K., Semoka, J. R. M., Bekunda, M. A., … Mukhwana, E. J. (2006). Available technologies to replenish soil fertility in East Africa. Nutrient Cycling in Agroecosystems, 76(2–3), 153–170. https://doi.org/10.1007/s10705-005-7126-7
Paul, J., Choudhary, A. K., Suri, V. K., Sharma, A. K., Kumar, V., & Shobhna. (2014). Bioresource nutrient recycling and its relationship with biofertility indicators of soil health and nutrient dynamics in rice–wheat cropping system. Communications in soil science and plant analysis, 45(7), 912-924. https://doi.org/10.1080/00103624.2013.867051
Paul, J., Choudhary, A. K., Sharma, S., Bohra, M., Dixit, A. K., & Kumar, P. (2016). Potato production through bio-resources: Long-term effects on tuber productivity, quality, carbon sequestration and soil health in temperate Himalayas. Scientia Horticulturae, 213, 152-163. https://doi.org/10.1016/j.scienta.2016.10.022
Poudel, S., & Kotani, K. (2013). Climatic impacts on crop yield and its variability in Nepal: do they vary across seasons and altitudes?. Climatic change, 116(2), 327-355. https://doi.org/10.1007/s10584-012-0491-8
Rahman, M. A., Kang, S., Nagabhatla, N., & Macnee, R. (2017). Impacts of temperature and rainfall variation on rice productivity in major ecosystems of Bangladesh. Agriculture & Food Security, 6(1), 10. https://doi.org/10.1186/s40066-017-0089-5
Rathnayake, W. M. U. K., De Silva, R. P., & Dayawansa, N. D. K. (2016). Assessment of the suitability of temperature and relative humidity for rice cultivation in rainfed lowland paddy fields in Kurunegala district. https://doi.org/10.4038/tar.v27i4.8214
Saha, A., Havenner, A., & Talpaz, H. (1997). Stochastic production function estimation: small sample properties of ML versus FGLS. Applied Economics, 29(4), 459-469. https://doi.org/10.1080/000368497326958
Sarker, M. A. R., Alam, K., & Gow, J. (2012). Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data. Agricultural Systems, 112, 11-16. https://doi.org/10.1016/j.agsy.2012.06.004
Sarker, M. A., Alam, K., & Gow, J. (2013). How Does the Variability in A us Rice Yield Respond to Climate Variables in B angladesh?. Journal of Agronomy and Crop Science, 199(3), 189-194. https://doi.org/10.1111/jac.12011
Styger, E., & Traoré, G. (2018). 50,000 Farmers in 13 Countries: Results from Scaling up the System of Rice Intensification in West Africa.
Van Ypersele de Strihou, J. P. (2014). Climate Change 2014 Synthesis Report.
WDR. (2000). World Development Report 2000 / 1 Attacking Poverty.
Welch, J. R., Vincent, J. R., Auffhammer, M., Moya, P. F., Dobermann, A., & Dawe, D. (2010). Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proceedings of the National Academy of Sciences, 107(33), 14562-14567.
Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT press.
Wooldridge, J. M. (2013). Introductory Econometrics: A Modern Approach 5th EDITION (SOUTH-WEST, Vol. 120–121).
World Resources Institute. (2013). Creating a Sustainable Food Future : A menu of solutions to sustainably feed more than 9 billion people by 2050. World Resources Report 2013-14.
Xu, J., Chang, J., Liu, Y., Guo, L., Du, G., & Guan, G. (2025). Impacts of Climate Change on Crops: a comprehensive review. Hydrological Processes, 39(9), e70224.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Interdisciplinary Finance and Development Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
